Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Pernille Harris ${ }^{\text {a* }}$ and Pauli Kofod ${ }^{\text {b }}$

${ }^{\text {a }}$ Centre for Crystallographic Studies, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark, and ${ }^{\mathbf{b}}$ Department of Life Sciences and Chemistry, Roskilde University, PO Box 260, DK-4000 Roskilde, Denmark

Correspondence e-mail: pernille@ccs.ki.ku.dk

Key indicators
Single-crystal X-ray study
$T=122 \mathrm{~K}$
Mean $\sigma(\mathrm{S}-\mathrm{O})=0.004 \AA$
H-atom completeness 96%
Disorder in solvent or counterion
R factor $=0.036$
$w R$ factor $=0.102$
Data-to-parameter ratio $=32.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

A methyl-coordinated $\mathbf{R} \mathbf{h ' I}^{\text {II }}$ ion in methylpenta-amminerhodium(III)-chloropentaammine-rhodium(III)-dithionate ($0.73 / 2.27 / 3$)

Some disorder is seen in the crystal structure of $\left[\mathrm{Rh}\left(\mathrm{CH}_{3}\right)\left(\mathrm{NH}_{3}\right)_{5}\right]_{0.73}\left[\mathrm{RhCl}\left(\mathrm{NH}_{3}\right)_{5}\right]_{2.27}\left(\mathrm{~S}_{2} \mathrm{O}_{6}\right)_{3}$. It is, however, clear that the methyl group has a pronounced trans influence on the $\mathrm{Rh}-\mathrm{N}$ distance, with an elongation of $0.11 \AA$. No trans influence is observed for the $\mathrm{Rh}-\mathrm{N}$ distance due to the Cl^{-} ion. Both observations are in agreement with observations in equivalent cobalt complexes.

Comment

In continuation of our earlier investigations on methylcobalt(III) compounds (Kofod et al., 1997), we have initiated studies on similar $\mathrm{Rh}^{\mathrm{III}}$ coordination compounds.

(I)

The pentaamminerhodium(III) series, $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{X})\right]^{2+}$, include, in addition to a range of inorganic anionic ligands, the hydrido ligand and alkyl ligands $\left(X=\mathrm{H}^{-}, \mathrm{RCH}_{2}{ }^{-}, \mathrm{RCF}_{2}{ }^{-}\right.$; Thomas et al., 1968; Skapski \& Throughton, 1969). These alkylrhodium(III) compounds have been prepared by addition of alkenes to $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{H})\right]^{2+}$ and, therefore, the corresponding methyl and aryl derivatives cannot be prepared in this way.

In a search for ways to prepare $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CH}_{3}\right]^{2+}$, we tried methylation of pentaamminerhodium(III) compounds with methyllithium, which was unsuccessful. The reason is probably the acidic nature of the ammine ligands together with the poor solubility in ether solvents.
$\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{CH}_{3}\right)\right]^{2+}$ was prepared by utilizing methyl transfer from tetramethyltin(IV) to $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)\right]^{2+}$. The trifluoromethanesulfonate ion, $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$, is a weak ligand and thus constitutes a good leaving group in inorganic substitution reactions (Dixon et al., 1984).

In the crystal structure, we found a mix of $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{CH}_{3}\right)\right]^{2+}$ and $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$ cations linked by hydrogen bonds to $\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}$ anions. The $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$ originates from incomplete conversion of $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$ to $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$. The $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$ cation and one $\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}$ anion were found on general positions, while the reaction product $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{CH}_{3}\right)\right]^{2+}$ and another $\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}$ anion were found on the mirror plane. Furthermore, the crystal structure showed disorder of the position of the methyl

Figure 1
Views of the $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{CH}_{3}\right)\right]^{2+}$ and $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$ cations, including the labelling of the atoms. The displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres with an arbitrary radii.
group, $v i z .27 \%$ of the atom in this position was modelled by a chloride ion. The model gives a sensible hydrogen-bonding pattern, with no hydrogen-bond possibilities to the methyl group.

In $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{CH}_{3}\right)\right]^{2+}$, the average $\mathrm{Rh}-\mathrm{N}$ distance of the ammine groups equatorial to the methyl group is 2.067 (1) \AA, and the $\mathrm{Rh}-\mathrm{N}$ distance of the ammine group trans to the methyl group is significantly longer by $0.11 \AA$ with a value of 2.177 (6) \AA. The $\mathrm{Rh}-\mathrm{C}$ distance is $1.99(2) \AA$. In $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$, the $\mathrm{Rh}-\mathrm{N}$ distance trans to Cl^{-}is 2.057 (4) \AA and the average $\mathrm{Rh}-\mathrm{N}$ distance for the ammine groups cis to Cl^{-}is 2.071 (15) \AA; these values are in agreement with earlier results from the literature (West, 1935; Weishaupt et al., 1978).

The methyl is seen to have a strong structural trans influence, in agreement with it being a strong σ-donor ligand. We observed a trans influence of $0.13 \AA$ compared with the analogous Co complex (Kofod et al., 1997), where the average $\mathrm{Co}-\mathrm{N}$ distance for the ammine group cis to the methyl group was 1.974 (3) \AA and the $\mathrm{Co}-\mathrm{N}$ distance for the ammine group trans to the methyl group was 2.105 (1) \AA. The trans-influence in $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\right]^{2+}$ (Skapski \& Throughton, 1969) was found to be $0.18 \AA$, with the distances changing from $2.07 \AA$ (with the ammine groups cis to the ethyl group) to $2.25 \AA$ (with the ammine trans to the ethyl group).

The Cl^{-}ion shows no trans influence on the ammine group. This is also in agreement with the structure of the equivalent cobalt complex (Messmer \& Amma, 1968), where the $\mathrm{Co}-\mathrm{N}$ distance trans to the Cl^{-}group was 1.964 (6) \AA and the average $\mathrm{Co}-\mathrm{N}$ distance cis to the Cl^{-}group was 1.975 (17) \AA.

Experimental

$\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$ in tetramethylene sulfone (sulfolane) (Dixon et al., 1984) was mixed with excess tetramethyltin(IV) and heated in an argon atmosphere at 383 K in a closed Teflon container for 16 h (to be published elsewhere). Elemental analysis showed that the crude product contained significant amounts of $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$ and $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{CH}_{3}\right)\right]^{2+}$. Crystals of $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5^{-}}\right.$ $\left.\left(\mathrm{CH}_{3}\right)\right]_{0.73}\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]_{2.27}\left(\mathrm{~S}_{2} \mathrm{O}_{6}\right)_{3}$ were grown by slow diffusion of a solution of crude $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{CH}_{3}\right)\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$ in saturated aqueous ammonia into a saturated solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$.

Crystal data

$\left[\mathrm{Rh}\left(\mathrm{CH}_{3}\right)\left(\mathrm{NH}_{3}\right)_{5}\right]_{0.733^{-}}$
$\left[\mathrm{RhCl}\left(\mathrm{NH}_{3}\right)_{5}\right]_{2.27}\left(\mathrm{~S}_{2} \mathrm{O}_{6}\right)_{3}$
$M_{r}=1135.58$
Monoclinic, Im
$a=6.271$ (2) \AA 。
$b=27.205$ (3) \AA
$c=9.871(2) \AA$
$\beta=97.29(1)^{\circ}$
$V=1670.4 \mathrm{~A}^{3}$
$Z=2$
$D_{x}=2.258 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 474
reflections
$\theta=4.4-31.0^{\circ}$
$\mu=2.11 \mathrm{~mm}^{-1}$
$T=122(1) \mathrm{K}$
Rod, colourless
$0.37 \times 0.17 \times 0.08 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer
θ and φ scans
Absorption correction: by Gaussian
integration (Coppens, 1970)
$T_{\text {min }}=0.542, T_{\text {max }}=0.898$
34422 measured reflections
7322 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.102$
$S=1.07$
7322 reflections
225 parameters
H atoms treated by a mixture of independent and constrained refinement

7148 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.057$
$\theta_{\text {max }}=35.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-43 \rightarrow 43$
$l=-15 \rightarrow 15$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0598 P)^{2}\right. \\
& +6.9449 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.023 \\
& \Delta \rho_{\max }=3.30 \mathrm{e} \mathrm{~A}^{-3} \\
& \Delta \rho_{\min }=-1.68 \mathrm{e} \mathrm{~A}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 3578 \text { Friedel pairs } \\
& \text { Flack parameter }=0.43(3)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right.$).

Rh2-N22	2.057 (4)	Rh1-C11	1.99 (2)
Rh2-N21	2.057 (4)	Rh1-N12	2.066 (4)
Rh2-N23	2.061 (4)	Rh1-N13	2.068 (4)
Rh2-N24	2.076 (4)	Rh1-N11	2.177 (6)
Rh2-N25	2.091 (4)	Rh1-Cl1	2.368 (5)
Rh2-Cl	2.3492 (12)		
N22-Rh2-N21	88.21 (15)	N25-Rh2-Cl	88.33 (11)
N22-Rh2-N23	90.91 (15)	C11-Rh1-N12	89.0 (3)
N21-Rh2-N23	92.04 (14)	N12-Rh1-N12 ${ }^{\text {i }}$	89.7 (3)
N22-Rh2-N24	92.90 (16)	$\mathrm{C} 11-\mathrm{Rh} 1-\mathrm{N} 13{ }^{\text {i }}$	90.8 (3)
N21-Rh2-N24	177.83 (15)	$\mathrm{N} 12-\mathrm{Rh} 1-\mathrm{N} 13{ }^{\text {i }}$	179.34 (18)
N23-Rh2-N24	89.81 (15)	N12-Rh1-N13	89.67 (16)
N22-Rh2-N25	91.04 (15)	N13 ${ }^{\text {i }}$-Rh1-N13	91.0 (2)
N21-Rh2-N25	89.69 (14)	C11-Rh1-N11	180.0 (5)
N23-Rh2-N25	177.43 (15)	N12-Rh1-N11	91.04 (17)
N24-Rh2-N25	88.42 (16)	N13-Rh1-N11	89.17 (15)
$\mathrm{N} 22-\mathrm{Rh} 2-\mathrm{Cl}$	177.54 (13)	N12-Rh1-Cl1	89.40 (15)
$\mathrm{N} 21-\mathrm{Rh} 2-\mathrm{Cl}$	89.40 (10)	N13-Rh1-Cl1	90.40 (14)
$\mathrm{N} 23-\mathrm{Rh} 2-\mathrm{Cl}$	89.79 (11)	N11-Rh1-Cl1	179.4 (2)
N24-Rh2-Cl	89.46 (11)		

Symmetry code: (i) $x,-y, z$.

The structure solution in the monoclinic space group Im showed pseudo-centrosymmetry. Therefore, structure solution and refinement was attempted in other space groups. The structure could also be solved in $P \overline{1}$, but the model suffered from disorder and very unrealistic displacement parameters and the conventional R factor could not be reduced below 0.14 . The solution and refinement in $P 1$ was identical to the solution in Im. $\left[\mathrm{Rh}_{\left.\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+} \text { was found in a }}^{\text {a }}\right.$ general position, and $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{CH}_{3}\right)\right]^{2+}$ was found on the mirror plane. The position of the CH_{3} group was found by examining the hydrogen-bond possibilities. $\mathrm{An}_{\mathrm{NH}_{3}}$ group in the position of the CH_{3} group would have no reasonable hydrogen-bond acceptors. Initially, the displacement parameter of the C atom was very elongated and the $\mathrm{Rh}-\mathrm{C}$ distance very long. This was interpreted as disorder, so that 27% of the positions which were mainly occupied by $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{CH}_{3}\right)\right]^{2+}$ were found to be occupied by $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$, giving the stoichiometry in the asymmetric unit: $1.135\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$ and $0.365\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{CH}_{3}\right)\right]^{2+}$. The CH_{3} position was allowed to refine freely, but the Rh1-Cl1 distance in $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{CH}_{3}\right)\right]^{2+}$ was restrained to be similar to the $\mathrm{Rh} 2-\mathrm{Cl}$ distance in $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$. The maximum and minimum difference densities were found to be 3.30 and -1.68 e \AA^{-3}, respectively. These relatively high values were
in the close vicinity of the rhodium ions. The H atoms of the ordered NH_{3} groups were included at ideal positions and allowed to ride on the parent atom. The isotropic displacement parameters were constrained to $1.5 U_{\text {eq. }}$. The H atoms of the CH_{3} group were on top of the Cl^{-}ion and therefore they were not included. Refinement of the Flack (1983) parameter showed that the crystal was a racemic twin, with a twin fraction of 0.43 (3).

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX (Duisenberg, 1992); data reduction: EvalCCD (Duisenberg, 1998) and DREAD (Blessing, 1987); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976).

The authors thank Flemming Hansen for obtaining the crystallographic data, Anette Langkilde and Henning O. Sørensen for help with the software and Sine Larsen for valuable comments on the manuscript.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Blessing, R. H. (1987). Crystallogr. Rev. 1, 3-58.
Coppens, P. (1970). The Evaluation of Absorption and Extinction in SingleCrystal Structure Analysis. Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall and C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.
Dixon, N. E., Lawrence, G. A., Lay, P. A. \& Sargeson, A. M. (1984). Inorg. Chem. 23, 2940-2947.
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Duisenberg, A. J. M. (1998). PhD thesis, University of Utrecht, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kofod, P., Harris, P. \& Larsen, S. (1997). Inorg. Chem. 36, 2258-2266.
Messmer, G. G. \& Amma, E. L. (1968). Acta Cryst. B24, 417-422.
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Skapski, A. C. \& Throughton, P. G. H. (1969). J. Chem. Soc. Chem. Commun. pp. 666-667.
Thomas, K., Osborn, J. A., Powell, R. \& Wilkinson, G. (1968). J. Chem. Soc. A, pp. 1801-1809.
West, C. D. (1935). Z. Kristallogr. 91, 181-186.
Weishaupt, M., Bezler, H. \& Strähle, J. (1978). Z. Anorg. Allg. Chem. 440, 5264.

